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High stresses can occur in bonded dissimilar materials after a change in temperature in the vicinity of the 
intersection of the interface and the free edge. These stresses depend on the thermal expansion and on the 
elastic constants of the two materials. In bonded quarter planes the stresses near the intersection of the 
interface and the free edge can be described by the sum of one singular term and one regular term which is 
independent of the distance to the singular point. With the exception of the stress intensity factor of the 
singular term, all parameters can be calculated analytically. The stress intensity factor was evaluated 
numerically using the finite element method. Joints with different ratios of height to length and various 
material combinations were investigated. An empirical relationship between the stress intensity factor, the 
elastic constants and the ratios of height to length of the joint is given by exponential and polynomial 
equations. 

KEY WORDS thermal stresses; bimaterial; stress singularity; stress intensity factor; FEM. 

INTRODUCTION 

Many engineering components contain bimaterials, e.g. ceramic-metal joints, in order 
to combine the special properties of different materials. During the fabrication process, 
or later in use, the bimaterial is exposed to a change in temperature. Due to the 
differences in thermal expansion, stresses occur in both materials. Several investiga- 
tions of the thermal stresses have been published. 

Timoshenko’ conducted a stress analysis of the heated bimaterial strip using the 
elementary beam theory. Timoshenko’s analysis predicted that a constant radius of 
curvature would develop along the length of the strip, and a linear axial stress 
distribution would be generated away from the ends of the strip. Hess’ examined the 
stress distribution near the ends of the bimaterial. In his study, a stress field was 
assumed for the end loaded plate and superimposed on that from Timoshenko’s 
solution to satisfy the condition of equilibrium at the free ends. Suhir3 developed an 
approach based on an elementary beam associated with finite longitudinal and 
transverse interfacial compliances which enabled the equilibrium conditions to be 
satisfied at the stress-free edges. Williams4 first described the singular stress fields with 
singularities of type The singularity exponent, w, as a function of the geometry at 
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the free edge and the elastic constants, was calculated by Bogy.’ Heinzelmann et aL6 
investigated the relationship between the ratios of height to length and the stress 
intensity factor for joints with equal heights of both materials. In the present paper, the 
relationship between the stress intensity factor, the elastic constants and the ratios of 
height to length of bonded quarter planes will be studied. 

E l 1  ~1 I 0(1 

X 

E,, v2, a2 

GENERAL STRESS RELATION 

For the stress analysis, the following assumptions have been made: 

0 Homogeneous change in temperature. 
0 Perfect bond at the interface. 
0 Plane strain. 
0 Both materials are linear elastic, homogeneous and isotropic. The material par- 

Applying an Airy stress function and the appropriate boundary conditions, the 
components of the stress tensor in the vicinity of the intersection of the interface and the 
free edge of two bonded quarter planes can be described as a function of the coordinates 
I and 8 (Fig. I).’ 

ameters are independent of the temperature. 

(1) 

For joints with two rectangular wedge angles, the stress exponent can be obtained by 
solving the following transcendental equation:* 

,12(A2 - l )u2 + 2,12[sinz(nA/2) - ,12]uP + [sin2(d/2) - h2]2f12 

+ sin2(n,l/2)cosz(nA/2) = 0 (2) 
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BONDED QUARTER PLANES 3 

with 

w = 1 - Re@). 

a and bare the Dundurs  parameter^,^ which are a function of the elastic constants of the 
two materials L: 

with 

and 

m2 - km, 
m2 + km, 

L Y =  

(mz - 2)  - k(m,  - 2) '= m 2 + k m l  

for plane stress 

4(1 - vi)  for plane strain. 
( 1  + V i )  

G is the shear modulus and v is the Poisson's ratio. 
To describe the stress distribution near the singular point only stress exponents in the 

range - 0.5 < w < 1 are of interest. Equation (2) leads to only one solution for w in the 
interesting range. 

The components of the regular stress tensor aijo are: l o  

urO = uo sin2(6) 

= (TO c0s2(6) 

Urea = uo cos(0) sin(6) 

where uo can be calculated by 

for plane stress 1' V i ( 1  Ei + V i )  for plane strain. 

for plane stress 
ai(l  + vi)  for plane strain. 

E t =  vi 

The equations for the angular functionsfij are given by Yang." 

loading the stress intensity factor, K ,  can be written as 
In Eq. (1) the stress intensity factor has the same dimension as the stress. For thermal 

( 5 )  K ,  = AT(a; - a;)KT. 
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4 M. TILSCHER et al. 

K :  depends on the Young’s moduli, on the Poisson’s ratios of the two materials, and on 
the geometry of the joint. K :  can be calculated numerically, e.g. by the finite element 
method. 

For a rectangular joint with min(H,/L, HJL) 2 2 the stress intensity factor, K,, for 
a given material combination is constant and denoted as K,,. For -K,,/a, a 
polynomial approximation was found7 

- K,,/a, = 1 - 2.890 + 1 1 . 4 ~ ’  - 5 1 . 9 ~ ’  + 1 3 5 . 7 ~ ~ -  135.80~. (6) 

Later on, deviations of up to ten percent were calculated between the values of the 
equation above and the results of the finite element calculation.” The divergence 
increases with decreasing stress exponent, w, and increasing difference between the 
Poisson’s ratios v1 and v2.  For material combinations of practical relevance, with 
Poisson’s ratios from 0.2 to 0.4, the equation above constitutes a good approximation 
to the stress intensity factor KLm. The maximum relative error does not exceed three 
percent. 

In this paper, the stress intensity factor is calculated for different ratios HJL and 
H,/L and different material combinations of a joint. The relationship between the 
stress intensity factor, the ratios of height to length and the elastic constants are 
described. 

FINITE ELEMENT PROCEDURE 

The thermal stress field was calculated with the FE-code ABAQUS.I2 The mesh in the 
vicinity to the singular point is shown in Figure 2. Biquadratic elements with eight 
nodes and reduced integration were used. The smallest distance between two nodes 
referring to min(H,,H,,L) is All calculations are made for a decrease in 
temperature of one Kelvin. 

The stress intensity factor was obtained from a plot of log(aij - oijo) uersus log(r/L). 
As an example, material combination A with a large w is considered (see Table I). In 
Figure 3a the values of log (aij - aijo) are plotted uersus the relative distance log(r/L) 
along the interface. Figure 3b shows the values of log(a, - a,,) along the free edge of 
material 1 and material 2. A straight line with the slope --o can be seen. The stress 
intensity factor can be obtained from the location of any one of these lines, applying the 
corresponding valuesJj and oijo. To determine the stress intensity factor a quantity l7 is 
defined as 

where n is the number of points used to determine K,. According to the least squares 
method, the minimum of ll with respect to the value K ,  has to be found. It is given by 

-0  
an 
J K ,  
-- 
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BONDED QUARTER PLANES 5 

FIGURE 2 The mesh in the vicinity of the singular point. 

leading to the equation 

K ,  = -exp - 1 ln(oy(rk, 0,) - aij0(0,)) + o 
&j(ek) { : [ k I l  k =  1 

with 8, = const, 

whereJj, aijo and o can be calculated analytically. The stresses a: are calculated by the 
finite element method. 

RESULTS 

Material Parameters 

For a given material combination there are two possibilities to indicate the two 
materials with the subscript 1 and 2. We choose the indication so that it holds: 
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6 M. TILSCHER et al. 

TABLE Ia 
Geometry and material parameters of combination A 

El  in E,in a, in a, in - HI - 
Combination H2 H, GPa GPa V I  v, 10-6K-1 10-6KK-1 

A 0.5 10 250 25 0.33 0.28 1 2 

TABLE Ib 
The Dundurs parameters, the stress exponent, the regular stress term and the angular functions of 

combination A 

uo in 
Combination a B w MPa 40' 4.4,. 4.90- 

A 0.8237 0.2562 0.1864 -0.09777 1.0 1.1474 1.7990 

this corresponds to 

< a/2. (1 1) 
As another example the material parameters of combination B are given in Table IIa. 
Table IIb shows the values of the Dundurs parameters, a and #I, the stress exponent, o, 
and the regular stress term, aijo. This material combination has a smaller stress 
exponent, o, than combination A. 

a 
5 

os 
I 

t5- 
.- 

0.1 

0.0 1 
1E-07 1E-06 1E-05 1E-04 1E-03 1E-02 

r/L 
FIGURE 3a The values log(u, - by,,) and log (uxy) uersus log(r/L) along the interface for combination A. 
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BONDED QUARTER PLANES 7 

0 

1E-07 1E-06 1E-05 1E-04 1E-03 1E-02 
r/L 

FIGURE 3b The values log(uy - uo) uersus log(r/L) along the free edge of material 1 and material 2 for 
combination A. 

TABLEIIa 
Material parameters of combination B 

Combination El E2 V l  v 2  a, in a2 in 
inGPa inGPa 10-6K-' 10-6K-' 

B 400 70 0.3 0.2 4 8 

TABLE IIb 
Dundurs parameters, u and 8, the stress exponent, w, and the regular 

stress term, uyo, for combination B 

Combination a B 0 uyo in MPa 

B 0.71543 0.28099 0.094733 - 1.79330 

Effect of Geometry 

In Eq. (l), L is the half length of the joint (see Fig. 1). To normalise the distance r, the 
height, H,, of material 1 or the height, H,, of material 2 can be used as well. The 
corresponding stress intensity factors are then denoted K,, and K H 2 ,  respectively. 
Between the different definitions of the stress intensity factor the relationship 

K,L'" = K, ,  H y  = K,, Hz (12) 
holds. 

The stress intensity factor for combination B was calculated using the method 
described above. The ratios H J H ,  and L / H ,  are varied. Figure 4a shows the stress 
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8 M. TILSCHER et al. 

intensity factor K,, versus L I H ,  for different ratios HJH, .  The same results are 
plotted in Figure 4b as K,, versus LIH,. 

The relationship between the ratios of height to length of the joint and the stress 
intensity factor, K ,  can be described as follows: 

H, /H2= 
1.5 i 

1 E - 0 2  1E-01 1E+00 1E+01 1 E + 0 2  1 E + 0 3  
L/H1 

FIGURE 4a Log(K,,,) versus log(L/H,) for combination B with different ratios H J H , .  

W H 2 =  
1.7 I 

1 E - 0 2  1 E - 0 1  1E+00 1E+01 1E+02 1 E + 0 3  
L/H 2 

FIGURE 4b Log(K,,) uersus log(L/H,) for combination B with different ratios H , / H , .  
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BONDED QUARTER PLANES 9 

1. For joints with min(Hl/L, H,/L) 2 2 the value of K ,  = K,, is independent of 
H,/L and H,/L. Therefore, 

The value of log(K,,) increases linearly with log(L/H,) (and log(K,,) linearly 
with log(L/H,)) with a slope of o. 

2. Above a critical value of L/H, (or L/H,), K,,  (or K H 2 )  reaches a constant value, 
KHlm (or K,,,,). The critical value of L/H, (or L/H,) depends on H,/H,. 

3. The transition between the straight line with the slope w and K,, = KHlm (or 
K,,  = K H 2 ,  is continuous and takes place in a narrow range of L/H,(or L/H,). 

In Figure 5a KHlm is plotted uersus H,/Hl and in Figure 5b KHZm is plotted uersus 
HJH,. It can be seen that: 

1. KHlm reaches a constant value KElm for H,/H, 2 10. 
2. KHZm reaches a constant value KEzm for H,/H, 2 10. 
3. K i l m  corresponds to the location of the straight line in the 

log(H,/H,) plot which is given by: 

1 E - 0 2  1 E - 0 1  1 E + 0 0  1 E + 0 1  1 E + 0 2  1 E + 0 3  
H2/H,  

FIGURE 5a Log(K,, m) uersus l o g ( H , / H , )  for combination B. 
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M. TILSCHER et al. 

0.74 I 1 I I I 

1 E-03 1 E-01 1 E+01 1 E+03 
H I  /H, 

FIGURE 5b Log(K,,,) versus log (H, /H, )  for combination B. 

4. KZZm corresponds to the location of the straight line in the log(K,,,,) 
- log(H,/H,) plot which is given by: 

5. In Figure 5, the transitions between the straight lines with the slope o and the 
constant values KZIm(KZ2,J are continuous and occur in a small range of 
HZ/Hl(Hl/H2)* 

The complete relationship between K,, and the ratio H,/L can be described by 
1 

with 

where n is a curve-fitting parameter. The stresses then can be described by Eq. (1) with 

Altogether, there are three characteristic constants describing the relationship 
between the stress intensity factor, K, and the ratios of height to length of the joint. The 
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BONDED QUARTER PLANES 11 

definitions of these constants are: 

This means that the thickness of material 1 is much smaller than the thickness of 
material 2 and the length of the interface (thin layer of material 1 bonded to a thick 
substratum of material 2). 

This means that the thickness of material 2 is much smaller than the thickness of 
material 1 and the length of the interface (thin layer of material 2 bonded to a thick 
substratum of material 1). 

These three constants are independent of the geometry and, therefore, they are 
characteristic parameters for each material combination. 

For some special values of the ratios Hl/L, HJL the following relations can be used: 

for min(H,/L, H,/L) 2 2 ( 184 

for Hl/H2 5 0.1, Hl/L IO.1 (18b) 

for H,/H, 50.1, H2/L IO.1 (184 

Effect of the Elastic Constants 

To describe the stress intensity factor K,,  the three constants KLm,  Kglm, KZZm and 
the fitting parameter n should be determined. A polynomial approximation for KL, 
has already been given in Eq. (6). 

THE PARAMETER K&, 

To investigate the relationship between the elastic constants and K i Z m ,  the stress 
intensity factor is calculated by the method described before. The geometry of the joints 
are Hl/H2 = 100 and L/H, = 100, leading to the stress intensity factor KZZm. The 
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12 M. TILSCHER et al. 

1.25- 
b” 

*f“ 1.00- 

\ 
a 

Y 
I 

0.75- 

material parameters of the joints investigated are: 

00 j 

8 i  
8 

El = 1 x 105MPa 

1 x 1 0 3 M P a 5 E  < 

0.05 5 v1 50.49 a1 = 1 x 10-6K-1 

+ v 2 ) ~ l  0.05 < v2 50.49 a, = 2 x 10-6K-’ 
- V1(l + v1) 

The upper limit for E2 is due to the restriction B < a/2. The values of - KZ,,/o, are 
plotted uersus the stress exponent, o, in Figure 6. The values K and no are proportional 
to AT and to (a; - a;). Therefore, the ratio K&,/a, is independent of the thermal load, 
AT, and the difference of the thermal expansion coefficients. The same results as in 
Figure 6 are shown in Figure 7 for fixed Poisson’s ratios of vz = 0.2,0.25 and 0.3. It can 
be seen that generally - K&,/a, decreases with increasing o. For a fixed value v 2  a 
more or less unique relation between - K$,,/cJ, and o exists, even if vl, El and E, are 
varied. All results can be fitted by a polynomial expression: 

- Kg2,/oo = 1.0137 - 0.1867 V, - 2.8641 w + 10.3654~~0 + 0.6783 V ;  

- 17.5983 v:w + 2.35560’ - 1 7 . 4 5 4 ~ ~ ~ ’  + 36.2823 v ; 0 2  (19) 
The values of Eq. (19) are also shown as solid lines in Figure 7a-7c. The maximum 
relative error (KgF, - KZ2m)/KZ2m between the results obtained using the FE method 
and Eq. (19) is smaller than 10%. 

THE PARAMETER K:,m 

The geometry is Hl/H2 = 0.01 and L/H = 100 which leads to the stress intensity factor 

FIGURE 6 Values of - K:,m/u, versus the stress exponent, w. 
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BONDED QUARTER PLANES 13 

The material parameters are: 

El = 1 x 1OSMPa a, = 1 x 10-"K-' 

1 x 1 0 3 M P a 5 E  < ",(' -t v2)~, 0.05 5 v2 10.49 a2 = 2 x 1OP6K-' 

0.05 5 v1 10.49 

- v,(l + v1) 
The upper limit of E ,  results from the restriction B < a/2. Figure 8 shows the values of 

- K$,,/a, versus w. The same results as in Figure 8 are shown in Figure 9 for fixed 

1 .oo 

0" '-. 0.75 
8 
*I 
Y 

N 

0 FEM I 0.50 

0.00 1 
0.05 0.1 0.15 0.2 

0 
0 

FIGURE 7a Values of - K;fiZm/uo versus w for bimaterials with the Poisson's ratio u2 = 0.2. 

1'2517----- 1 .oo 

0.251 

0.00 I I 1 1 1 

0 0.05 0.1 0.15 0.2 0.25 
0 

FIGURE 7b Values of - K;fi,,/uo uersus w for bimaterials with the Poisson's ratio u2 = 0.25. 
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14 M. TILSCHER eta!. 

1.25 

1 .oo 

0" 
\ 0.75 

8 
*I 
Y 

N 

0 FEM I 0.50 

0.25 

0.00 
0.05 0.1 0.1 5 0.2 0.25 

0 
0 

FIGURE 7c Values of - Ki , , /uo  uersus w for bimaterials with the Poisson'sratio u2 = 0.3. 

Poisson's ratios of v2 = 0.2, 0.25 and 0.3. The values of - KZ,,/a, are fitted with a 
polynomial in w and v2: 

- Kgl m / ~ o  = 0.9919 + 0.1523 v2 - 2.3825 - 8.0247 v2w - 0.5966 V: 

+ 1 4 . 5 5 8 9 ~ ; ~  + 15 .33730~  - 16.7054u2w2 - 3.5281 viw2 (20) 

-0.1 0.0 0.1 0.2 0.3 0.4 
0 

FIGURE 8 The values of - K i ,  ,/uo uersus w. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
2
:
4
3
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



BONDED QUARTER PLANES 15 

The values of eq. (20) are also shown as solid lines in Figure 9a-9c. The maximum 
relative error (KZT: - K i l m ) / K i l m  between the results obtained using the FE 
method and Eq. (20) is smaller than 10%. 

It can be seen that the ratios - KZlm/ao and - KZ,;/ao depend on v 2  and only 
negligibly on u l .  This means that the Poisson's ratio of the material with the smaller 

1 .o < 0.8 
* f  7 0.6 

0 0.04 0.08 0.12 0.16 0.2 
0 

FIGURE 9a Values of - Ki, ,/ao versus w for bimaterials with the Poisson's ratio u2 = 0.2. 

I 
0 FEM 

0.4 

0 0.04 0.08 0.12 0.16 0.2 0.24 
0 

FIGURE 9b Values of - KZ, ,/ao uersus w for bimaterials with the Poisson's ratio u2 = 0.25. 
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16 M. TILSCHER et al. 

1 .o 

9 0.8 
'f 

I 

0.41 0.2 

0 FEM 

01 I I I I I 

0 0.05 0.1 0.15 0.2 0.25 0.3 
0 

Values of - K i , _ / u ,  uersus w for bimaterials with the Poisson's ratio u2 = 0.3. FIGURE 9c 

effective Young's modulus ( E z  < ET) is more important than the Poisson's ratio of the 
material with the larger effective modulus. 

THE EXPONENT n 

We - define the value of K , ,  , = K H Z m  for H , / H ,  = 1 as KHm. The stress intensity factor 
K,, is calculated with the method described before. The ratios are H J H ,  = 1 and 
L / H ,  = 100. The material parameters of the joints investigated are: 

El = 1 x 10'MPa 0.2 I v 1  I 0.4 a1 = 1 x K - '  

1 x 103MPa<E < "(l +")El 0 . 2 1 ~ ~  50 .4  u 2 = 2  x 10-6K-1 
- V l ( 1  + v1)  

The upper limit for E, is due to the restriction p < 4 2 .  Figure 10 shows the values of 
- KHm/oO uersus w. The values of - KHm/oO are fitted by a polynomial in w, 

KHm = 0.9981 - 2 . 7 2 4 8 ~  + 7.252101, - 7 . 0 3 5 2 ~ ~ .  (21) 
Furthermore, Figure 10 shows the values of Eq. (6) for - KLm/o,. It is shown that 

the statement in reference 6 K H ,  = K , , , ( H , / H ,  = 1)  = KL, is only valid for small w. 
For material combinations with a large stress exponents, w, the divergence between 
K L ,  and K,, reaches up to 25%. 

For joints with H J H 2  = 1 and H, / L  I 0.1 Eq. (15) can be written as follows: 
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1.2 1 

0.44 
0 FEM 

0.24 

0 I 

17 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 
W 

FIGURE 10 Values of - R,,/o, and - K,,/a, uersus w. 

If the polynomial descriptions of Eq. (19), Eq. (20) and Eq. (21) are used, a relationship 
results between n and w with v 2  as the parameter. The solutions of n from Eq. (22) are 
shown in Figure 11 as points. The relationship between n, w and u2 is fitted by a 
polynomial using the least squares method: 

n = 48.2878 - 110.723 u2 - 479.042 w - 340.791 u2w + 1200.72 u; 
(23) 

- 3377.91 U;O + 2056.290’ - 3025.53 u2w2 + 5534.08 V;O’ 

15- 
c 

10- 

5- 

o solution of eq.(22) 

- eq.(23) 

01 I I I I I I 

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 
0 

FIGURE 1 1  The relationship between n and w with u2 as the parameter. 
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18 M. TILSCHER et al. 

Now, the four parameters KLm, K i 2 , ,  K i l  and n in Eq. (1 5 )  can be approximated by 
the equations (6), (19), (20), and (23). Therefore the stress field near the singular point 
can be calculated without any further FEM calculations. 

EXAMPLES 

Figure 12 shows the stress intensity factor, K H Z ,  for combination B with different 
geometries obtained by the finite element method as points and from Eq. (15) as solid 
lines. The values of Eq. (15) are in good agreement with the stress intensity factors 
obtained from the finite element method. 

The stresses in the vicinity of the singular point are calculated by the finite element 
method and compared with those calculated with Eq. (1) using the stress intensity 
factor of equation (15). As examples, two combinations with a great and a small stress 
exponent o are considered. The geometries and material parameters of the joints are 
shown in Table IIIa. The Dundurs parameters, the stress exponent, the regular stress 
term, and the angular functions for the investigated joints are shown in Table IIIb. The 
stress intensity factor and the parameters of geometry are shown in Table IIIc. 

Figure 13a and 13b show the stresses, cij, along the interface for the combinations C 
and D. The results of the finite element method are plotted as points, the values of 
Eq. (1) as solid lines. 

Depending on the elastic constants and on the geometry, the relative error of the 
stress intensity factor goes up to 10%. The accuracy achieved in determining the 
stresses near the singular point depends not only on the relative error of the stress 

1E-02 1E-01 1E+00 1E+01 1E+02 1E+03 
L/H 2 

FIGURE 12 The valuesoflog(K,,) obtained by the finiteelement method and by Eq.(15) uersus log(L/H,) 
for combination B. 
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TABLE IIIa 
Geometry and material parameters of combinations C and D 

L El in E ,  in a l  in a2 in 
- HI - 

Combination H, H2 GPa GPa V I  v 2  10-6K-' 10-6K-1 

C 100 100 270 140 0.37 0.28 1 2 
D 0.01 1 180 60 0.2 0.35 1 2 

TABLE IIIb 
The Dundurs parameters, the stress exponent, the regular stress term, and the angular functions of 

combinations C and D 

a. in 
Combination a B 0 MPa fY0' f Y d  f"90. 

C 0.3463 0.1382 0.01991 - 1.7434 1.0 1.0224 1.1088 
D 0.4656 0.06889 0.1027 -0.2293 1.0 1.1004 1.5354 

TABLE IIIc 
The stress intensity factors of combinations C and D 

Combination K E  in MPa K;Y'y' in MPa K,, in MPa K i l m  in MPa K i 2 ,  in MPa 
~ ~ ~ ~ ~~~ 

C 1.7097 1.7219 1.6502 1.608 1 1.7225 
D 0.1064 0.1025 0.1790 0.1646 0.2054 

intensity factor, but also on the stress exponent, o, the ratio, - KH2/oijo, the angular 
function, Aj, and the relative distance, ( r / H 2 ) .  

If Aoij is the absolute error of the stress oij and AKH2 is the absolute error of the stress 
intensity factor KH2, there results 

The regular stress terms oxo and oxyo vanish. Therefore, 

--Y=- AKH2 

0, o x y  K H 2  * 

Only the relative error of the stress oy depends on the coordinates r and 8 and on the 
stress exponent o. 

For w 4 0  there isAj(8) + 1 and oyo/KH2 + - 1 and, therefore, Aoy/oy + 00. Because 
of that, it is not recommended to use the developed relations for the stress o,, for small 
exponents w. From our calculations we recommend a lower limit of w = 0.01. If the 
Poisson's ratios are within 0.2 and 0.35, then the ratio of the Young's moduli should be 
E , / E 2  > 2.3 or E , / E 2  < 0.4. 
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1 E+OO 

1 E - 0 1 -  
I 

1 E - 0 7  1 E - 0 6  1E-05 1 E - 0 4  1 E - 0 3  
‘/L 

FIGURE 13a The stresses log(a,) and log(u,,) uersus log(r/L) along the interface of combination C. 

E+oo: 

1 

0 

1 E - 0 2  I I I I 

1E-07 1E-06 1E-05 1 E - 0 4  1 E - 0 3  
r / I  
I -  

FIGURE 13b The stresses log(u,) and log(o,,) versus log(r/L) along the interface of combination D. 

CONCLUSION 

In two bonded dissimilar materials high stresses can occur in the intersection between 
the interface and the free edge after a uniform change in temperature. The stress field in 
this area can be described by the sum of a singular stress term and a regular stress term. 
With the exception of the stress intensity factor all parameters in Eq. (1) can be 
calculated analytically. 
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The stress intensity factor of the singular term depends on the geometry, the elastic 
constants, the thermal expansion coefficients and the loading of the bimaterial. The 
stress intensity factor can be calculated by using the finite element method. For joints 
with an extreme geometry the upper limits K i l m  and KS2m were found for the stress 
intensity factors K,, and K H 2 .  The relationship between the geometry of two bonded 
quarter planes and the stress intensity factor was evaluated and described by an 
exponential function using the constants K i l m  and KZ2m as parameters. K i l m  and 
K:2m are characteristic quantities of each material combination and independent of 
geometry. The relationships between the elastic constants and K i l m  and K i z m  are 
described by polynomial functions. 

The stress intensity factor can be calculated now with a maximum relative error of 
ten percent. For material combinations with relevance to practice the relative error is 
significantly smaller. 

For joints with stress exponents o greater than 0.01 the analytically-approximated 
stresses are in good agreement with the stresses calculated with the finite element 
method. 
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